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幾何学入門演習で出された問いに以下のようなものがあった．平面内の曲線について曲率と合同
性を議論し，それを 3次元空間内の曲線に対して拡張したあとに設けられていた問いである．

幾何学入門演習第 1章 1.2節演習問題 B-5� �
一般に，N 次元空間内の曲線 γ : [a, b] → RN についても，曲率の定義の一般化を考察せよ．
どのように定義すればよいだろうか？また，その自分で考えた定義は定理 1.21（3 次元空間
内の曲線に対して弧長，曲率，捩率が等しいことと合同であることが同値）の一般化ができ
るか？� �

これに対する自分なりの答えが出たので，以下にまとめる．なお（正しい用語は？）とある箇所は，
私が独自に言葉を定義したため一般的な用語と異なっている可能性がある部分である．

1 曲率の一般化
1.1 弧長によるパラメーター付けの存在
まず RN 内の曲線，弧長，弧長によるパラメーター付け，同一曲線の異なるパラメーター付けを
以下のように定義する．

定義 1 (RN 内の曲線，弧長，弧長によるパラメーター付け，同一曲線の異なるパラメーター付け).

• C∞ 級函数 γ : [a, b] → RN で任意の t ∈ [a, b]に対しγ′(t) ̸= 0 を満たすものの像 γ([a, b])

を曲線と呼び γ を曲線のパラメーター付けと呼ぶ．混同の恐れがないときは γ も曲線と
呼ぶ．

• γ : [a, b] → RN が曲線 C のパラメーター付けであるとき，l(C) :=
∫ b

a
∥γ′(t)∥dtを曲線 C

の弧長と呼ぶ．
• 曲線 C のパラメーター付け γ の定義域が [0, l(C)]で任意の t ∈ [0, l(C)]に対して ∥γ′(t)∥ =

1を満たすとき，γ を曲線 C の弧長によるパラメーター付けと呼ぶ．
• C∞級函数 γ : [a, b] → RN , δ : [c, d] → RN に対し，次を満たすC∞級函数 h : [a, b] → [c, d]

が存在するとき，γ と δ を同一曲線の異なるパラメーター付けという．
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1. γ = δ ◦ h.
2. h(a) = c, h(b) = dかつ任意の t ∈ [a, b]に対して h′(t) > 0．

次の命題を示す．
命題 2.弧長によるパラメーターの存在� �
任意の曲線 C に対し，その弧長によるパラメーター付けが一意的に存在する．� �

証明. 曲線 C が γ : [a, b] → RN , γ(t) = (x1(t), . . . , xN (t)) でパラメーター付けられているとす
る．函数 L : [a, b] → [0, l(C)]を

L′(t) =
d

dt

∫ t

a

√
x′
1(s)

2 + · · ·+ x′
N (s)2ds =

√
x′
1(s)

2 + · · ·+ x′
N (s)2 (1)

で定める．任意の t ∈ [a, b] に対し γ′(t) ̸= 0 より L′(t) > 0 であるから，逆関数定理より L−1 :

[0, l(C)] → [a, b]が存在し，Lが C∞ 級であるので L−1 も C∞ 級である．函数 δ : [0, l(C)] → RN

を δ = γ ◦ L−1 で定める．

L−1(0) = a, L−1(l(C)) = b, ∀t ∈ [0, l(C)] (L−1)′(t) = 1/L′(L−1(t)) > 0 (∵ (1))

より，δ も曲線 C のパラメーター付けである．さらに

δ′(t) = γ′(L−1(t)) · (L−1)′(t) =
γ′(L−1(t))

L′(L−1(t))
=

(
x′
1(L

−1(t))

L′(L−1(t))
, . . . ,

x′
N (L−1(t))

L′(L−1(t))

)
より，(1)を用いれば

∥δ′(t)∥ =

(
x′
1(L

−1(t))

L′(L−1(t))

)2

+ · · ·+
(
x′
N (L−1(t))

L′(L−1(t))

)2

=
x′
1(L

−1(t))2 + · · ·+ x′
N (L−1(t))2

L′(L−1(t))2

= 1.

よって δ は曲線 C の弧長によるパラメーター付けである．次に一意性を示す．二つの函数
δ1(t) = (x1(t), . . . , xN (t)), δ2(t) = (y1(t), . . . , yN (t)) がともに曲線 C の弧長によるパラメー
ター付けであるとする．このときどちらも曲線 C のパラメーター付けであることから，函数
h : [0, l(C)] → [0, l(C)]が存在し δ1 = δ2 ◦ hかつ h(0) = 0となる．前者より

1 = x′
1(t)

2 + · · ·+ x′
N (t)2

= (y′1(h(t))h
′(t))2 + · · ·+ (y′N (h(t))h′(t))2

= h′(t)2(y′1(h(t))
2 + · · ·+ y′N (h(t))2)

= h′(t). (∵ δ2 が弧長によるパラメーター)

であるので，後者と合わせ h(t) = tであり，故に δ1 = δ2 である．以上から弧長によるパラメー
ター付けは一意的に存在する．
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1.2 曲率の一般化
N を 3以上の自然数とする．R2，R3 内の曲線で定義された曲率，捩率を一般化し，RN 内の曲
線に対し N − 1個の曲率を定義する．

定義 3 (第 iベクトル，曲率). γ を RN 内の曲線 C の弧長によるパラメーター付けとする．曲線
C 上の点 γ(t)に対し t1(t), . . . , tN (t) ∈ Rn と κ1(t), . . . , κN−1(t) ∈ Rを以下で定義する．

t1(t) = γ′(t), κ1(t) = ∥t′1(t)∥

t2(t) =
t′1(t)

κ1(t)
, κ2 = ∥t′2(t) + κ1(t)t1(t)∥

ti+2(t) =
t′i+1(t) + κiti(t)

κi+1(t)
, κi+2(t) = ∥t′i+2(t) + κi+1(t)ti+1(t)∥

但し i = 1, . . . , N − 2である．なお κ1, . . . , κN−1 ̸= 0は定義する上での条件として課す．上のよ
うに定めた ti(t)を第 iベクトル（正しい用語は？），κi(t)を第 i曲率（正しい用語は？）と呼ぶ．
必要がなければ ti(t), κi(t)を単に ti, κi などと書く．

R3 では第 1ベクトルが単位接ベクトルに，第 2ベクトルが主法線ベクトルに，第 3ベクトルが
従法線ベクトルに一致し，第 1 曲率が曲率に，第 2 曲率が捩率に一致する．R3 では接ベクトル，
主法線ベクトル，従法線ベクトルが正規直交基底をなし Frenet枠と呼ばれた．同じように RN で
も第 iベクトルらが正規直交基底になっている．
命題 4.第 iベクトルらによる正規直交基底� �
{t1, . . . , tN}は RN の正規直交基底となる．（できれば det(t1 · · · tN ) = 1，つまり右手系であ
ることまで言いたかったが示せなかった．）� �

証明. 定義より ∥ti∥ = 1(i = 1, . . . , N)は良い．特に t1 · t1 = 1である．2以上 N 以下の自然数
nをとる．任意の i, j < nに対して恒等的に ti · tj = δi,j であると仮定する．i < nに対し恒等的
に ti · tn = 1であることを示す．仮定より ti · tn−1 = δi,n−1 であるので両辺を微分して

t′i · tn−1 + ti · t′n−1 = 0,

(κiti+1 − κi−1ti−1) · tn−1 + ti · (κn−1tn − κn−2tn−2) = 0,

κti+1 · tn−1 + κn−1ti · tn − κn−2ti · tn−2 = 0, (2)

∴ ti · tn = 0. (3)

(2)から (3)への変形は iについて場合分けすることになるが結局 (3)になる．以上より帰納的に
任意の 1 ≤ i, j ≤ N に対して ti · tj = δi,j が示された．これより {t1, . . . , tN}は RN の正規直交
基底となる．

t′1, . . . t
′
N−1 については定義より

t′1 = κ1t2, t′i = κiti+1 − κi−1ti−1 (i = 2, . . . , N − 1) (4)
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と {t1, . . . , tN} に関する表示が得られている．{t1, . . . , tN} に関する表示を得られていない t′N

について考える．ti · tN = δi,N の両辺を微分して t′i · tN + ti · t′N = 0 を得る．これより
t′N = a1t1 + · · ·+ antN とおくと

ai = ti · t′N = −t′i · tN

であり (4)を用いれば

ai =

{
0 (i ̸= N − 1)

−κN−1 (i = N − 1)

となる．よって
t′N = −κN−1tN−1

である．以上をまとめると以下のようになる．
命題 5.Frenet枠行列の微分� �
曲線 C の第 iベクトルを ti，第 i曲率を κi とすると

(t′1 · · · t′N ) = (t1 · · · tN )



0 −κ1 0 · · · 0

κ1 0 −κ2

...

0 κ2 0
. . .

...
...

. . .
. . . −κN−1

0 · · · 0 κN−1 0


(5)

が成り立つ．� �
上命題中の (5)一番右の曲率を成分にもつ行列を微分変換行列（正しい用語は？）と呼び K(t)で
表し，(t1 · · · tN )を Frenet枠行列（正しい用語は？）と呼び Λ(t)で表す．必要がなければそれぞ
れ単にK,Λと書く．これらの表記を用いれば (5)は

Λ′ = ΛK (6)

となる．

2 曲率と合同性
RN の部分集合が合同であることの定義を確認しておく．

定義 6 (合同). S, S′ ⊂ RN に対し，ある A ∈ O(N), b ∈ RN が存在し AS + b = S′ となるとき
S と S′ は合同であるという．

以後，曲線 C の弧長によるパラメーター付けを γ，第 iベクトルを ti，第 i曲率を κi，Frenet

枠行列を Λ，微分変換行列をK とし，曲線 C̃ の対応するものを，γ̃ のように ˜ を付けて表す．次
が目的の命題である．
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命題 7.曲率と合同性� �
曲線 C, C̃ について，

l(C) = l(C̃)かつK = K̃ ⇐⇒ 曲線 C と曲線 C̃が合同

である．� �
証明. ( ⇐= ) 仮定より，ある A ∈ O(N), b ∈ RN が存在して，Aγ + b = γ̃ となる．よって
Aγ′ = γ̃′であり，直交行列で表現される線型写像が等長写像であることから ∥γ′∥ = ∥Aγ′∥ = ∥γ̃′∥
である．よって t1 = t̃1 であり，このことと曲率の定義より i = 1, 2, · · · , N − 1に対して κi = κ̃i

である．したがってK = K̃ である．また t1 = t̃1 と弧長の定義より l(C) = l(C̃)である．
( =⇒ ) Λ̃(t)Λ−1(t) が t によらず一定で，Λ̃Λ−1(γ − γ(0)) = γ̃ − γ̃(0) となることを示す．まず
l(C) = l(C̃)であるので曲線 C, C̃ に対して定義される写像（γ(t), γ̃(t)など）の定義域は等しい．
(6)を用いると

d

dt

(
Λ̃Λ−1

)
=Λ̃′Λ−1 + Λ̃(Λ−1)′

=Λ̃KΛ−1 + Λ̃(−Λ−1Λ′Λ−1)

=Λ̃KΛ−1 + Λ̃(−Λ−1ΛKΛ−1)

=Λ̃KΛ−1 − Λ̃KΛ−1

=O

よって Λ̃Λ−1 は tによらず一定．これを用いると
d

dt

(
Λ̃Λ−1(γ − γ(0))− (γ̃ − γ̃(0))

)
= Λ̃Λ−1γ′ − γ̃′

であり，e1 = t(1, 0, . . . , 0)とおくと，Λe1 = t1 = γ′, Λ̃e1 = t̃1 = γ̃′ であることから Λ̃Λ−1γ′ = γ̃′

であるので，
d

dt

(
Λ̃Λ−1(γ − γ(0))− (γ̃ − γ̃(0))

)
= 0

となる．Λ̃Λ−1(γ(0)− γ(0)) = 0 = γ̃(0)− γ̃(0)であるから，Λ̃Λ−1(γ − γ(0)) = γ̃ − γ̃(0)，すな
わち

Λ̃Λ−1γ + (−Λ̃Λ−1γ(0) + γ̃(0)) = γ̃

となる．命題 4より Λ̃,Λ ∈ O(N)であるので Λ̃Λ ∈ O(N)であるから，曲線 C と曲線 C̃ は合同
である．

かくして曲率は一般化され，弧長，曲率と合同性の同値性が示された！
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