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本稿では半直積について初歩的なことの解説と，ガロア理論で登場する半直積の紹介を行う．半
直積の導入の仕方には色々と方法があるが，今回は群の直積分解に着目し，その拡張として半直積
を導入する．

1 直積分解と半直積
まず直積には次のような特徴があった．
命題 1.� �
群 Gとその部分群 N,H について，次は同値．

(1). G = N ×H.（ただし右辺は内部直積）
(2). G ⊵ N,H かつ N ∩H = {1}かつ NH = G.� �

証明. (2)のとき NH 3 (n, h) 7→ nh ∈ Gが同型になる．逆は明らか．

具体的な使い方を見てみよう．
問題 2.� �
m,nを互いに素な自然数とする．位数 mnの群 Gが位数 m,nの正規部分群 N,H を持つと
する．このとき，G ∼= N ×H となることを示せ．� �

（解答）N ∩ H ≤ N,H ゆえ |N ∩ H| は m,n の約数．m,n 互いに素より |N ∩ H| = 1 ゆえ
N ∩H = {1}．N,H ≤ NH ゆえ，|NH|は m,nの倍数．m,n互いに素ゆえ |NH| = mnより
NH = G．N,H ⊴ Gであるので，G ∼= N ×H．□
このように，二つの部分群が良い性質を持っていたら，それらの直積に分解することができる．
しかしもちろん，二つの部分群があっても条件を満たしていなければ直積に分解はできない．例え
ば次のような場合だ．

例 3. 二面体群 Dn(n ≥ 3) について考える．Dn は位数 2 の元 τ と位数 n の元 σ を用いて
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{σiτ j | i = 0, · · · , n− 1, j = 0, 1}と表せる．（ただし τ, σ は τστ = σ−1，Dn = 〈τ, σ〉なる元で
ある）〈τ〉 = H, 〈σ〉 = N とおくと，Dn = NH であり，N ∩H = {1}である．また，N は指数
2の部分群ゆえ正規である．しかし，H は正規部分群ではない．実際 στσ−1 = σ2τ 6∈ H である．
よって Dn 6∼= N ×H

このように Dn(n ≥ 3)は上のように N,H では直積分解できない．しかし満たしていない条件
は H が正規であるという条件のみであり，かなり惜しい気がする．では実際に何が問題になって
いるのか，見てみよう．命題 1で G ∼= N ×H を示す際には N ×H 3 (n, h) 7→ nh ∈ Gが同型を
見た．同じように写像 f : N ×H → Dn を f(x, y) = xy としてみると，

f(σi, τ j)f(σk, τ l) = σiτ jσkτ l = σi−kτ j+l,

f((σi, τ j)(σk, τ l)) = f(σi+k, τ j+l) = σi+kτ j+l

となり，一般には f((x, y)(z, w)) = f(x, y)f(z, w) が成立しない．このために f は準同型にすら
なっていないのだ．この原因は何かと考えると，N ×H の積が (x, y)(z, w) = (xz, yw)と定義さ
れていることだ．そこで，f が積を保つように，N ×H の積の定義を変えてみよう．上の計算結
果を見ると

(σi, τ j)(σk, τ l) = (σi−k, τ j+l)

となれば f は積を保つようになる．σi−k = σi(τ jσkτ−j)であることに注目して，次のように定義
を変える．
命題 4.� �
集合 N ×H に積 ” · ”を (a, x) · (b, y) = (a(xbx−1), xy)と定める．(N ×H, · )は群となり，
Gと同型である．� �

証明. はじめにこの演算により群となっていることを確認する．まず N は正規部分群なので
x(yzy−1) ∈ N ゆえ，積の定義は well-definedである．

(a, x) · (1, 1) = (a(x1x−1), x1) = (a, x),

(1, 1) · (a, x) = (1(1a1−1), 1x) = (a, x)

より (1, 1)が単位元である．

(a, x) · (x−1a−1x, x−1) = (a(x(x−1a−1x)x−1), xx−1) = (1, 1),

(x−1a−1x, x−1) · (a, x) = (x−1a−1x(x−1ax), x−1x) = (1, 1)

より (a, x)の逆元 (x−1a−1x, x−1)が存在する．また

((a, x) · (b, y)) · (c, z) = (a(xbx−1), xy) · (c, z) = (axbx−1(xyc(xy)−1), xyz)

(a, x) · ((b, y) · (c, z)) = (a, x) · (bycy−1, yz) = (a(xbycy−1x−1), xyz)

となり，結合的である．
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次に Gと同型であることを見る．いま定めた群 (N ×H, ·)を N ⋊H と書くことにする．演算
を変えたため，先ほどの写像 f : N ⋊H → Gは準同型になっている．f の像は NH = Gゆえ全
射である．また，

f(n, h) = nh = 1 =⇒ n = h−1 ∈ N ∩H =⇒ (n, h) = (1, 1)

より Ker f = {1}ゆえ f は単射．よって f は同型となる．

このように命題 1 の条件のうち片方の部分群の正規性のみ満たしていないときには，直積には
分解できないものの，直積の演算を少し捻ってあげることによって，直積のようなものに分解で
きるのだ．このような直積の演算を少し捻ったものを半直積と呼ぼう．（以下 N,H は一般の群を
表す）
定義 5.半直積（その 1）� �
N を群 Gの正規部分群，H を群 Gの部分群であって，NH = G,N ∩H = {1}を満たすも
のとする．集合 N ×H に

(a, x)(b, y) = (a(xbx−1), xy).

と演算を定めると，これは群となる．*1この群を N,H の半直積*2と呼び N ⋊H と書く．*3N
を正規因子，H を作用因子と呼ぶ．*4G ∼= N ⋊H となる．� �

これが群となり G ∼= N ⋊H となることの証明は，実は命題 4の証明で済んでいる．なぜなら命題
4の証明では N,H が Dn の部分群であるということは使っておらず，定義 5にある N,H の条件
だけを使っているからだ．
この半直積が直積の（もしくは半直積分解が直積分解の）一般化になっていることを見ておこう．

例 6. 群 Gに対して，N,H ⊴ Gが，N ∩H = {1}, NH = Gを満たしているとする．このとき
n ∈ N,h ∈ H に対して N,H の正規性より

hnh−1n−1 = h(nh−1n−1) ∈ H, hnh−1n−1 = (hnh−1)n ∈ N

ゆえ hnh−1n−1 ∈ N ∩H = {1}であり hnh−1 = nである．よって

(n1, h1) ·N⋊H (n2, h2) = (n1h1n2h1
−1, h1h2) = (n1n2, h1h2) = (n1, h1) ·N×H (n2, h2)

となり N ⋊H と N ×H の演算は一致するので，N ⋊H = N ×H である．

これで直積分解から着想し，直積の一般化である半直積をとりあえずは定義できたのものの，状
況はあまり嬉しくない．というのも半直積が，ある群の正規部分群と部分群に対してしか定められ

*1 成分を入れ替えてH ⋉N も同様に定義できるが，そのときには演算を (x, y)(z, w) = (xy, z−1yzw)と定める．第
二成分を zyz−1w とすると結合律が保たれなくなる．

*2 のちほどわかると思うが，これは半直積のうち内部半直積と呼ばれるものである．
*3 N ⊴ Gなので N ⋊H と ×の H 側に縦線を書く．
*4 正規因子，作用因子という用語がどれほど一般的かはわからないが，これを意味する他の用語は見当たらなかった．
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ないからだ．そこで次は，ある群の部分群として与えられているとは限らない，一般の群 N,H に
対して半直積 N ⋊H を定めることを目指そう．

2 一般の半直積
まず，先の半直積 N ⋊H の演算がどのように定義されていたか観察してみよう．

(a, x)(b, y) = (a(xbx−1), xy).

作用成分については，普通の直積と同じで，正規成分の方は，直積のときは aと bをかけたが，半
直積では aと bを xで”捻った”xbx−1 をかけている，と見ることができる．この bを xで捻る方
法が xbx−1 のままだと，正規因子と作用因子が同じ群の部分群になっているときにしか定義でき
ない．逆にいえばこの捻り方を一般の群でも定義できれば良いわけである．そこでこの捻り方につ
いて考えていこう．
まず b を x で捻るとはどういうことかというと，x ∈ H に依存して b ∈ N を別の元 b′ ∈ N

に変えることだ．*5 b′ を ϕx(b) と書くことにすると，捻り方とは x ∈ H ごとに決められた
写像 ϕx : N → N のことだと言えるだろう．これをさらに言い換えると，捻り方とは写像
ϕ : H → Map(N,N)のことである，となる．（ただし Map(N,N)は N から N への写像全体の
集合である）つまり群 N,H に対して，うまく ϕ : H → Map(N N)を定めることで，N ⋊H の”

捻った演算”を
(a, x)(b, y) = (aϕx(b), xy)

と定められるだろう，ということだ．
では ϕに何を要請すれば良いか考えていこう．まず (1, 1)が単位元になるだろうという予想のも
とで計算すると，

(1, 1)(a, x) = (ϕ1(a), x)

となるので，ϕ1 = idN でなければならない．次に (a, x)の逆元について考えるとそれは (b, x−1)

という形で，
(a, x)(b, x−1) = (aϕx(b), 1) (1)

となるので，a ∈ N, x ∈ H に対して ϕx(b) = a−1 となる b ∈ N が存在しなければならない．N の
任意の元はある元の逆元であるので，つまり ϕx は全射でなければならない．また ϕx(b) = ϕx(b

′)

であるとき，
(1, x)(b, 1) = (ϕx(b), x) = (ϕx(b

′), x) = (1, x)(b′, 1)

より b = b′，つまり任意の y ∈ N で ϕy は単射でなければならない．最後に結合律について考えて
みよう．結合律が成り立つなら，任意の x ∈ H, a, b ∈ N について

((1, x)(a, 1))(b, 1) = (ϕx(a), x)(b, 1) = (ϕx(a)ϕx(b), x),

(1, x)((a, 1)(b, 1)) = (1, x)(aϕ1(b), 1) = (1, x)(ab, 1) = (ϕx(ab), x)

*5 もちろん b = b′ でも良い．
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より ϕx(a)ϕx(b) = ϕx(ab)が成り立たなければならない．ここまでを踏まえると任意の x ∈ H に
対して ϕx : N → N は同型でなければならず，ϕ : H → Aut(N)である．さらに結合律が成り立
つなら，任意の x, y ∈ H, a ∈ N に対して

((1, x)(1, y))(a, 1) = (1, xy)(a, 1) = (ϕxy(a), xy),

(1, x)((1, y)(a, 1)) = (1, x)(ϕy(a), y) = (ϕx(ϕy(a)), xy)

より ϕxy(a) = ϕx(ϕy(a))が成り立たなければならず，aの任意性からこれは ϕxy = ϕx ◦ ϕy を意
味する．つまり捻り方 ϕは準同型 ϕ : H → Aut(N)でなければならない．実は条件はこれで十分
であるので，これを定義に採用し，実際に群となることを証明しよう．
定義 7.半直積（その 2）� �
N,H を群，ϕ : H → Aut(N)を準同型とする．集合 N ×H に積を

(a, x)(b, y) = (aϕx(b), xy)

と定めるとこれは群になる．この群を ϕで捻った*6N,H の半直積とよびN ⋊ϕH と書く．N

を正規因子，H を作用因子と呼ぶ．*7*8� �
証明. 上の N ⋊ϕ H が群であることを示す．

(a, x)(1, 1) = (aϕx(1), x) = (a, x), (1, 1)(a, x) = (ϕ1(a), x) = (a, x)

より単位元 (1, 1)が存在する．任意の (a, x)に対して，

(a, x)(ϕx−1(a−1), x−1) = (aϕx(ϕx−1(a−1)), 1) = (aa−1, 1) = (1, 1),

(ϕx−1(a−1), x−1)(a, x) = (ϕx−1(a−1)ϕx−1(a), 1) = (ϕx−1(a−1a), 1) = (1, 1)

より逆元 (ϕx−1(a−1), x−1)が存在する．任意の (a, x), (b, y), (c, z)に対して，

((a, x)(b, y))(c, z) =(aϕx(b), xy)(c, z)

=(aϕx(b)ϕxy(c), xyz)

=(aϕx(b)ϕx(ϕy(c)), xyz)

=(aϕx(bϕy(c)), xyz)

=(a, x)(bϕy(c), yz)

=(a, x)((b, y)(c, z))

より結合律が成り立つ．

*6 「ϕで捻った」という言い方は一般的ではない．
*7 N が N ⋊ϕ H の正規部分群になるので正規因子と呼び，ϕにより H が N に作用しているので H を作用因子と呼
ぶ．

*8 N,H を入れ替えて H ⋉ N とするときには，Aut(N) の積を ϕψ = ψ ◦ ϕ と定めて作用 H ↷ N を右作用にし
(x, a)(y, b) = (xy, ϕy(a)b)と定める．
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例 8. 定義 7が定義 5の一般化になっていることを確認しよう．N を群 Gの正規部分群，H を群
Gの部分群であって，NH = G,N ∩H = {1}を満たすものとする．ι : H → Aut(N)を内部自
己同型を導く写像，即ち ι(h) : n 7→ hnh−1 なるものとする．ι(h)を ιh と書くことにする．

ιx ◦ ιy(a) = ιx(yay
−1) = xyay−1x−1 = (xy)a(xy)−1 = ιxy(a)

より ιは準同型である．定義 7の意味で ϕで捻った N ⋊ι H の演算は
(a, x)(b, y) = (aιx(b), xy) = (a(xbx−1), xy)

であり，定義 5の意味での半直積の演算と一致し，N ⋊H = N ⋊ι H である．

例 9. 具体的な半直積を考えてみよう．ϕ : Z/2Z 3 1 7→ (n 7→ −n) ∈ Aut(Z/nZ) なる準同型 ϕ

がある．この ϕで捻った Z/nZ,Z/2Zの半直積を考える．（Z/nZ,Z/2Zの演算が”+”で書かれる
ことに注意）

(a, 0)(0, x) = (a+ 0, 0 + x) = (a, x)

ゆえ，Z/nZ ⋊ Z/2Z = (Z/nZ× {0})({0} × Z/2Z)である．よって σ = (1, 0), τ = (0, 1)とおく
と Z/nZ ⋊ Z/2Zは {σ, τ}で生成される．σ, τ の位数は n, 2であり，

τστ = (0, 1)(1, 0)(0, 1) = (0, 1)(1, 1) = (−1, 1 + 1) = (−1, 0) = σ−1

より τστ = σ−1．よって全射準同型 〈σ, τ | σn = τ2 = 1, τστ = σ−1〉 → Z/nZ ⋊ Z/2Zが存在す
る．定義域はDnと同型ゆえ位数 2n．Z/nZ⋊Z/2Zの位数も 2nであるので，Z/nZ⋊Z/2Z ∼= Dn．

上の例では半直積を既知の群に書き換えることができた．しかし半直積それ自体が新しい群を作
る方法であるので，半直積自体が既知の群になっていたり直積などを用いて簡単な形に書き直せる
ことはあまりない．（それ故に半直積を定義したとも言える）ゆえに半直積を他の形に書き換える
ことに挑戦するより，そのもの自体をうまく捉え扱えるよになる方が良いだろう．そこで半直積の
基本的な性質をいくつか確認しよう．
命題 10.� �
H,N を群，ϕ : H → Aut(N)を準同型とする．半直積 N ⋊ϕ H に対して以下が成り立つ．

(1). H は N ⋊ϕ H の部分群である．
(2). N は N ⋊ϕ H の正規部分群である．
(3). 作用因子への射影 N ⋊ϕ H 3 (a, x) 7→ x ∈ H は準同型である．
(4). 正規因子への射影 N ⋊ϕ H 3 (a, x) 7→ a ∈ N は準同型とは限らない．
(5). NH = N ⋊ϕ H である．（左辺は部分群同士の積）� �

証明. (1). 正確な主張はH ∼= {1}×H ≤ N⋊ϕH である．{1}×H 6= ∅であり，任意の x, y ∈ H

について
(1, x)(1, y−1) = (1ϕx(1), xy

−1) = (1, xy−1) ∈ {1} ×H

よりこれ部分群．同型は明らか．
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(2). 正確な主張は N ∼= N × {1} ⊴ N ⋊ϕ H である．f : N ⋊ϕ H 3 (a, x) 7→ x ∈ H とすると，

f(a, x)f(b, y) = xy = f(aϕx(b), xy) = f((a, x)(b, y))

よりこれは準同型で，その核は N × {1}ゆえこれは正規部分群．同型は明らか．
(3). (2)で示した．
(4). 例 9で扱った Dn

∼= Z/nZ ⋊ϕ Z/2Zの n ≥ 3の場合を考える．正規成分への射影を pとお
くと

p((1, 1)(1, 0)) = p(1 + ϕ1(1), 1 + 0) = 1 + (−1) = 0 6= 2 = 1 + 1 = p(1, 1) + p(1, 0)

となり，p は準同型とはならない．（半直積が直積なら射影は準同型になる．逆に射影が準
同型になるならば，H が射影の核，つまり正規部分群になるので，半直積は直積である）

(5). (a, 1)(1, x) = (aϕ1(1), 1x) = (a, x)より NH = N ⋊ϕ H．

3 ガロア理論と半直積
ガロア理論で登場する半直積を紹介する．ガロアの基本定理の一部に次のような主張がある．
定理 11.ガロアの基本定理（一部）� �
L/K を有限次ガロア拡大とし，M,M1,M2 を中間体とする．

(1). M/K がガロア拡大である ⇐⇒ Gal(L/M) ⊴ Gal(L/K)．
(2). M1 ·M2 に対応する部分群は Gal(L/M1) ∩Gal(L/M2)．
(3). M1 ∩M2 に対応する部分群は 〈Gal(L/M1),Gal(L/M2)〉．� �

これより，次が成り立つ．
命題 12.� �
L/K を有限次ガロア拡大*9，M1,M2 をその中間体とする．M1/K,M2/K が有限次ガロア
拡大，L = M1 ·M2,K = M1 ∩M2 であるとき，Gal(L/K) ∼= Gal(L/M1)×Gal(L/M2)．� �

証明. G = Gal(L/K), N = Gal(L/M1),H = Gal(L/M2)とおく．L/M1, L/M2 がガロア拡大ゆ
え N,H ⊴ G．これとK = M1 ∩M2 より

NH = 〈N,H〉 = Gal(L/M1 ∩M2) = G.

L = M1 ·M2 より
N ∩H = Gal(L/M1 ·M2) = Gal(L/L) = {1}.

よって命題 1より G ∼= N ×H．

*9 これは推進定理というものの簡略版で，実は L/K が有限次ガロア拡大という条件は不要．
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上の状況でM2/K がガロア拡大という条件のみ満たさない場合を考える．
命題 13.� �
L/K を体の拡大，M1,M2 をその中間体とする．L/K,M1/K が有限次ガロア拡大，L =

M1 ·M2,K = M1 ∩M2 であるとする．

L

M1 M2

K
Gal

Gal

このとき，Gal(L/K) ∼= Gal(L/M1)⋊Gal(L/M2)．� �
証明. G = Gal(L/K), N = Gal(L/M1),H = Gal(L/M2) とおく．L/M1 がガロア拡大ゆえ
N ⊴ G．これとK = M1 ∩M2 より

NH = 〈N,H〉 = Gal(L/M1 ∩M2) = G.

L = M1 ·M2 より
N ∩H = Gal(L/M1 ·M2) = Gal(L/L) = {1}.

よって定義 5より G ∼= N ⋊H．

推進定理を使うと Gal(L/M2) ∼= Gal(M1/K) より，さらに Gal(L/K) ∼= Gal(L/M1) ⋊
Gal(M1/K)となる．最後に具体的な問題を見て終わりにしよう．
問題 14.� �
多項式 X7 − 11の有理数体 Q上の最小分解体を K ⊆ Cとする．Gal(K/Q)の同型類を特定
せよ．（参考：京大院　理・数学　 2018年度　院試 [3]）� �

（解答）（疲れたので丁寧な解答は気が向いたら書く）ζ = exp(2π
√
−1/7) とおく．K =

Q(ζ, 7
√
11),Q(ζ) ∩ Q( 7

√
11) = Q である．Gal(K/Q(ζ)) ∼= Z/7Z であり Q(ζ)/Q はガロア拡

大ゆえ，これは Gal(K/Q) の正規部分群．Gal(K/Q( 7
√
11)) ∼= Z/6Z．以上と命題 13 より，

Gal(K/Q) ∼= Z/7Z ⋊ Z/6Z．
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