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基礎科目
1� �
R2 の部分集合 D を

D = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, (x2 + y2)2 ≤ x2 + 2y2}

で定める．積分 ∫∫
D

xye1−x2−y2

dxdy

の値を求めよ．� �
（解答）x = r cos θ, y = r sin θ と極座標変換すると dxdy = rdrdθ であり，積分領域は

D′ = {(r, θ) ∈ [0,∞)× [0, 2π) | 0 ≤ θ ≤ π/2, 0 ≤ r ≤
√

1 + sin2 θ}

に写る．よって求値 I は

I =

∫∫
D

cos θ sin θr3e1−r2drdθ

=

∫ π/2

0

cos θ sin θ

∫ √
1+sin2 θ

0

r3e−r2drdθ

=

∫ π/2

0

cos θ sin θ

[
−1

2
(r2 + 1)e1−r2

]√1+sin2 θ

0

dθ

=
1

2

∫ π/2

0

cos θ sin θ
(
e− (2 + sin2 θ)e− sin2 θ

)
dθ
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=
e

4

∫ π/2

0

sin 2θdθ − 1

4

∫ 1

0

(2 + t)e−tdt

(第 2項は sin2 θ = tと置換した)

=
e

4

[
−1

2
cos 2θ

]π/2
0

− 1

4

[
−(3 + t)e−t

]1
0

=
e

4
+

1

e
− 3

4
.
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2� �
aを複素数とし，複素 3次正方行列 Aを

A =

a− 1 0 0
1 −a 1
2a −2a a+ 1


と定める．行列 Aの固有値をすべて求めよ．また，Aの階数を求めよ．� �

（解答）第 1行で余因子展開して

det (xI3 −A) =det

x− (a− 1) 0 0
−1 x+ a −1
−2a 2a x− (a+ 1)



=(x− (a− 1)) det

(
x+ a −1
2a x− (a+ 1)

)

=(x− (a− 1))(x− a)(x+ a− 1).

よって Aの固有値はa− 1, a,−a+ 1．0を固有値に持つことと正則なことが同値ゆえ，a 6= 0, 1な
ら rankA = 3．a = 0のとき

rankA = rank

−1 0 0
1 0 1
0 0 1

 = rank

1 0 0
0 0 1
0 0 0

 = 2.

a = 1のとき

rankA = rank

0 0 0
1 −1 1
2 −2 2

 = rank

1 −1 1
0 0 0
0 0 0

 = 1.

以上をまとめると

rankA =


3 (a 6= 0, 1)

2 (a = 0)

1 (a = 1)

である．
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3� �
n,mを n ≥ 2mを満たす正の整数とする．V を有限次元複素ベクトル空間とする．f : V →
V を fn = fm を満たす線形写像とする．このとき，

V = Ker(fm)⊕ Im(fm)

を示せ．ここで，Ker(fm)は fm の核であり，Im(fm)は fm の像である．� �
（解答）任意の v ∈ Ker(fm) ∩ Im(fm)について，ある w ∈ V が存在し

v = fm(w) = fn−2m ◦ fm ◦ fm(w) = fn−2m ◦ fm(v) = fn−2m(0) = 0.

よって Ker(fm) ∩ Im(fm) = {0}．次に任意の v ∈ V について

fm(v − fn−m(v)) = fm(v)− fn(v) = 0

より
v = (v − fn−m(v)) + fm(fn−2m(v)) ∈ Ker(fm) + Im(fm).

よって V = Ker(fm) + Im(fm)．以上より V = Ker(fm)⊕ Im(fm)．□
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4� �
r を正の実数とし，R上の関数 ρr(x)を

ρr(x) = sin
(
re−r2x2

)
と定義する．R上の有界な実数値連続関数 f(x)に対し，次の問に答えよ．

(1). 任意の r > 0に対し，広義積分
∫ ∞

−∞
f(x)ρr(x)dxが収束することを示せ．

(2). lim
r→∞

∫ ∞

−∞
f(x)ρr(x)dx = 0を示せ．

(3). f(x)が x = 0で微分可能で f(0) = 0を満たすとき， lim
r→∞

r

∫ ∞

−∞
f(x)ρr(x)dx = 0を

示せ．� �
（解答）

(1). M を |f(x)|の上界とする．θ ∈ Rに対して | sin(θ)| ≤ |θ|ゆえ |f(x)ρr(x)| ≤ Mre−r2x2 で
あり ∫ ∞

−∞
Mre−r2x2

dx = M

∫ ∞

−∞
e−t2dt = M

√
π

である．よって広義積分 ∫∞
−∞ f(x)ρr(x)dxは絶対収束し，ゆえに収束する．□

(2). x 6= 0で
|f(x)ρr(x)| ≤ Mre−r2x2

→ 0(r → ∞)

よりほとんど至る所で f(x)ρr(x)は 0に各点収束する．x 6∈ [−1, 1]について考える．
d

dr
re−r2x2

= (1− 2r2x2)e−r2x2

ゆえ，r2 ≥ 1/2x2 のとき re−r2x2 は r について単調減少．1/2x2 ≤ 1/2ゆえ r > 1のとき

|f(x)ρr(x)| ≤ Mre−r2x2

≤ Me−x2

.

よって R上の関数 g(x)を

g(x) =

{
M (−1 ≤ x ≤ 1)

Me−x2

(x < −1, 1 < x)

とおくと，任意の r > 1で |f(x)ρr(x)| < g(x)であり，g(x)は R上ルベーグ可積分．よっ
てルベーグの収束定理から

lim
r→∞

∫ ∞

−∞
f(x)ρr(x)dx =

∫ ∞

−∞
0dx = 0.

□
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(3). 任意に ε > 0を取る．f ′(0) = aとおく．ある δ > 0が存在し 0 < |x| < δ なら

a− ε <
f(x)

x
< a+ ε

となる．よって R上の関数 h(x)を

h(x) =

{
ε (ρr(x) ≥ 0)

−ε (ρr(x) < 0)

と定義すれば，

x ≥ 0のとき (a− h(x))rxρr(x) < rf(x)ρr(x) < (a+ h(x))rxρr(x)

x < 0のとき (a+ h(x))rxρr(x) < rf(x)ρr(x) < (a− h(x))rxρr(x)

となる．したがって∫ δ

−δ

rf(x)ρr(x)dx <

∫ δ

0

(a+ h(x))rxρr(x)dx+

∫ 0

−δ

(a− h(x))rxρr(x)dx

=

∫ δ

0

(a+ h(x))rxρr(x)dx−
∫ δ

0

(a− h(x))rxρr(x)dx

=

∫ δ

0

2h(x)rxρr(x)dx

< ε

∫ δ

0

2rx · re−r2x2

dx

= ε
[
−e−r2x2

]δ
0

= ε
(
1− e−r2δ2

)
→ ε (r → ∞).

よって
lim sup
r→∞

r

∫ δ

−δ

f(x)ρr(x)dx ≤ ε.

同様にして
lim inf
r→∞

r

∫ δ

−δ

f(x)ρr(x)dx ≥ −ε.

|x| ≥ δ について考える．

d

dr
r2e−r2x2

= (2r − 2r3x2)e−r2x2

= (1− r2x2)2re−r2x2

ゆえ，r2e−r2x2 は r2 > 1/x2 なら単調減少し，1/δ2 ≥ 1/x2 ゆえ，r > 1/δ とすると，

r2e−r2x2

<
1

δ2
e−x2/δ2 .
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よって
|rf(x)ρr(x)| < Mr2e−r2x2

< M
1

δ2
e−x2/δ2

であり，最右辺は非負値で∫ ∞

−∞

1

δ2
e−x2/δ2dx =

1

δ

∫ ∞

−∞
e−t2dx =

√
π

δ

ゆえ (−∞,−δ] ∪ [δ,∞) 上ルベーグ可積分．よって rf(x)ρr(x) は可積分な優関数を持つ．
また rf(x)ρr(x)は x 6= 0で 0に各点収束する．よってルベーグの収束定理より，

lim
r→∞

∫
(−∞,−δ]∪[δ,∞)

rf(x)ρr(x)dx =

∫
(−∞,−δ]∪[δ,∞)

= 0.

よって

−ε ≤ lim inf
r→∞

r

∫ ∞

−∞
f(x)ρr(x)dx ≤ lim sup

r→∞
r

∫ ∞

−∞
f(x)ρr(x)dx ≤ ε.

ε > 0は任意だったので lim
r→∞

r

∫ ∞

−∞
f(x)ρr(x)dx = 0．□
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5� �
aを正の実数とする．次の広義積分の値を求めよ．∫ ∞

−∞

(cosx− 1)(x+ 1)

x(x2 + a2)
dx� �

（解答）
f(z) =

(eiz − 1)(z + 1)

z(z2 + a2)

とする．limz→0 f(z) = i/a2 ゆえ 0は f(z)の可除特異点で，f(0) = i/a2 と定めると f は ±iaを
一位の極にもつ C \ {±ia}上正則な関数である．Cの経路 C1, C2 を以下のように定める．

C1 : [−R,R] 3 t 7→ t ∈ C, C2 : [0, π] 3 θ 7→ Reiθ ∈ C.

ただし R > aとする．また Ij =
∫
Cj

f(z)dz (j = 1, 2)とおく．

• I2 について．

|I2| ≤
∫ π

0

∣∣f(Reiθ)iReiθ
∣∣ dθ

≤
∫ π

0

(e−R sin θ + 1)(R+ 1)

R(R2 − a2)
Rdθ

≤
∫ π

0

2(R+ 1)

(R2 − a2)
dθ

=
2π(R+ 1)

(R2 − a2)

→ 0 (R → ∞).

よって limr→∞ I2 = 0．
• I1 + I2 について．まず

Res(f, ia) = lim
z→ia

(z − ia)f(z) = lim
z→ia

(eiz − 1)(z + 1)

z(z + ia)
=

(1− e−a)(ia+ 1)

2a2

である．経路 C1 ∪ C2 が囲む領域上にある f の極は iaのみゆえ，

I1 + I2 = 2πiRes(f, ia) = π
(1− e−a)(−a+ i)

a2
.
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• I1 について．0 が f(z) の可除特異点であったことに注意すれば，与式の被積分関数は
[−1, 1]上有界．また |x| ≥ 1のとき∣∣∣∣ (cosx− 1)(x+ 1)

x(x2 + a2)

∣∣∣∣ ≤ 2 · 2x
x3

=
4

x2

であり，最右辺の (−∞,−1], [1,∞)上の広義積分は収束する．よって与えられた広義積分 I

は収束するので
I = lim

R→∞

∫ R

−R

Re(f(x))dx = Re
(

lim
R→∞

I1

)
.

以上より

I = Re
(

lim
R→∞

I1

)
= Re

(
lim

R→∞
((I1 + I2)− I1)

)
= Re

(
π
(1− e−a)(−a+ i)

a2
− 0

)
=

π(e−a − 1)

a
.

9



真中遥道 @GirlwithAHigoi

6� �
S2 は 2 次元球面 {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 + x2

3 = 1} を表すこととする．写像 f =

(f1, f2, f3) : S
2 × S2 → R3 を

f((x1, x2, x3), (y1, y2, y3)) = (x1 + y1, x2 + y2, x3 + y3)

により定める．この写像の臨界値をすべて求めよ．ただし q ∈ R3 が f の臨界値であるとは，
ある点 p ∈ S2 × S2 が存在して f(p) = q であり，点 p のまわりの S2 × S2 の局所座標系
(u1, u2, u3, u4)に関する f のヤコビ行列(

∂fi
∂uj

(p)

)
1≤i≤3,1≤j≤4

の階数が 2以下となることである．� �
（解答）p = (x1, x2, x3), q = (y1, y2, y3)とおく．F : R6 → R3, G : R6 → R2 を

F (p, q) = p+ q, G(p, q) = (‖p‖2 − 1, ‖q‖2 − 1)

と定める．ただし ‖ · ‖は L2 ノルムである．F,Gは C∞ 級写像で，F |S2×S2 = f,G−1((0, 0)) =

S2 × S2 である．
まず (0, 0)が Gの正則値であることを示す．

rank(dG)(p,q) = rank

(
2x1 2x2 2x3 0 0 0
0 0 0 2y1 2y2 2y3

)
より

rank(dG)(p,q) < 2 =⇒ p = 0,または q = 0.

これと (p, q) ∈ S2 × S2 のとき p 6= 0かつ q 6= 0であることより，(0, 0)は Gの正則値．またこれ
より S2 × S2 は 4次元 C∞ 級多様体．
(0, 0)はGの正則値であるので T(p,q)(S

2×S2) = Ker(dG)(p,q)．これを用いると (p, q) ∈ S2×S2

に対して

dimKer(df)(p,q) = dimKer(d(F |S2×S2))(p,q)

= dimKer(dF )(p,q)|T(p,q)(S2×S2)

= dim(Ker(dF )(p,q) ∩ T(p,q)(S
2 × S2))

= dim(Ker(dF(p,q)) ∩Ker(dG)(p,q))

= dimKer(d(F,G))(p,q)

= 6− rank(d(F,G))(p,q).
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したがって
rank(df)(p,q) = 4− dimKer(df)(p,q) = −2 + rank(d(F,G))(p,q)

ゆえ
rank(df)(p,q) < 3 ⇐⇒ rank(d(F,G))(p,q) < 5

となる．

rank(d(F,G))(p,q) = rank


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

2x1 2x2 2x3 0 0 0
0 0 0 2y1 2y2 2y3



= rank


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 x1 x2 x3

0 0 0 y1 y2 y3


であるので，(p, q) ∈ S2 × S2 に対して

rank(d(F,G))(p,q) < 5 ⇐⇒ p, q が線型従属 ⇐⇒ p = ±q.

したがって f の臨界値全体の集合は

{f(p, q) | p ∈ S2, p = ±q} = {(0, 0, 0)} ∪ {p ∈ R3 | ‖p‖ = 2}.
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専門科目
1� �
有限群 Γに対して，|Γ|は Γの位数，Aut(Γ)は Γの自己同型群を表すとする．また有限群 Γ

に対して，次の条件

(∗Γ) |H1| = |H2|をみたす任意の二つの部分群H1,H2 ⊆ Γに対して，α(H1) = H2 を
みたす α ∈ Aut(Γ)が存在する．

を考える．p は素数とし，有限群 G は (∗G) をみたす p 群とする．このとき，以下の問に答
えよ．

(i). G は巡回群でないアーベル群と仮定する．このとき，G の単位元でない元の位数は p

であることを示せ．
(ii). Gの中心 Z(G)は条件 (∗Z(G))をみたすことを示せ．
(iii). Gはアーベル群でないと仮定する．このとき，Gの位数 pの部分群が唯一つ存在する

ことを示せ．� �
（解答）

(1). 有限生成アーベル群の構造定理よりある整数 N ≥ 2, ei ≥ 1 (i = 1, . . . , N)が存在し

G =

N⊕
i=1

Z/peiZ, ei ≤ ei+1 (i = 1, . . . , N − 1)

として良い．eN = 1を示せば十分である．もし eN ≥ 2であるなら，Gは

H1 :=
(
pe1−1Z/pe1Z

)
⊕
(
pe2−1Z/pe2Z

)
⊕

(
N⊕
i=3

{0}

)
,

H2 :=

(
N−1⊕
i=1

{0}

)
⊕
(
peN−2Z/peNZ

)
という二つの位数 p2 の部分群を持つ．よって (∗G)よりある α ∈ Aut(G)が存在し，

α(H1) = H2

をみたす．これは H1
∼= H2 を導くが H1

∼= (Z/pZ)2 ,H2
∼= Z/p2Z に矛盾．したがって

eN = 1．□
(2). 任意に α ∈ Aut(G)をとる．x ∈ Z(G)のとき，任意の y について

yα(x) = α(α−1(y))α(x) = α(α−1(y)x) = α(xα−1(y)) = α(x)α(α−1(y)) = α(x)y

12
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より α(Z(G)) ⊆ Z(G)．位数比較より等号が成立し，α|Z(G) ∈ Aut(Z(G))．任意に Z(G)

の位数の等しい部分群 H1,H2 をとる．これらは G の部分群でもあるので (∗G) より
ある α ∈ Aut(G) が存在し α(H1) = H2 をみたす．よって α|Z(G) ∈ Aut(Z(G)) は
α|Z(G)(H1) = H2 をみたすので，Z(G)は (∗Z(G))をみたす．□

(3). |Z(G)| = pn とおく．p群の中心は非自明ゆえ n ≥ 1．(i),(ii)より，

Z(G) ∼= Z/pnZ, (Z/pZ)n .

いずれの場合でも Z(G) は位数 p の部分群 H1 を含む．G に位数 p の部分群 H2 があれば
H1 と Gの自己同型で写り合うので，(ii)での考察より H2 ⊆ Z(G)である．よって Z(G)

の位数 pの部分群が唯一つ存在することを示せば良い．これは Z(G) ∼= Z/pnZのとき成り
立っている．n ≥ 2のとき Z(G) ∼= (Z/pZ)n でないことを示す．n ≥ 2, Z(G) ∼= (Z/pZ)n

と仮定する．G がアーベルでないので x ∈ G \ Z(G) なる元が存在する．x の位数は先の
議論より pk (k ≥ 2)．よって y = xp(k−2) とすると y の生成する部分群 H1 は Z/p2Zと同
型．仮定より Z(G)は (Z/pZ)2 と同型な部分群 H2 を持つ．(∗G)よりある α ∈ Aut(G)が
存在し α(H1) = H2 となり，これは H1

∼= H2 を導くが Z/p2Z 6∼= (Z/pZ)2 に矛盾．よって
Z(G) 6∼= (Z/pZ)n．以上より題意が示された．□

13



真中遥道 @GirlwithAHigoi

2� �
nを正の整数とする．複素数体上の 1変数形式的べき級数環 CJtKの部分環 Aと Aの極大イ
デアル mの組 (A,m)であって，以下のすべての条件をみたすものを一つ構成せよ．

(a). Aは Cを含み，dimC(CJtK/A) < ∞．
(b). Aの商体における Aの整閉包は CJtKに一致する．
(c). dimC(m/m2) = n．� �

（解答）A = C+ tnCJtK,m = (tn)が求める組 (A,m)の一つであることを示す．

• (a)について．まず C ⊆ Aであり

CJtK/A =

∞∏
k=0

Ctk
/(

C×
∞∏

k=n

Ctk
)

= Ct× · · · × Ctn−1 ∼= Cn−1

ゆえ dimC(CJtK/A) = n− 1 < ∞．
• (b)について．各環の整閉包を · で表す．CJtKは一意分解環ゆえ正規環なので，A ⊆ CJtK
より A ⊆ CJtK = CJtK．逆に tk (k = 1, . . . , n− 1)について Xn − tkn は A上多項式で tk

を根に持つので，tk ∈ A．よって

A ⊇ ({t, . . . , tn−1} ∪Aが生成する環) = CJtK.
よって A = CJtK．

• (c)について．

(tn)/(tn)2 =

∞∏
k=n

Ctk
/ ∞∏

k=2n

Ctk =

2n−1∏
k=n

Ctk ∼= Cn

より dimC(m/m2) = n．

以上より示された．
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3� �
k を正の整数とし，f(X) = X6 + kX3 + 27は変数X に関する有理数係数の 1変数多項式と
する．このとき，次の条件

(∗)f(α) = 0をみたす任意の複素数 αに対して，Q(α)/Qは 6次ガロア拡大である．

をみたす正の整数 k をすべて求めよ．（※口頭試問の項に追加で聞かれた質問あり）� �
（解答）ω = exp(2πi/3)とおく．f ′(X) = 6X2(X3 + 3k)であり

f(0) = 27 6= 0, (−3k)2 + k(−3k) + 27 = 6k2 + 27 6= 0

ゆえ，f(X), f ′(X)は互いに素．よって f(X)は分離多項式である．任意に f(X)の根 αをとる．
ωα, ω2αも f(X)の根であり，分離性よりこれらのいずれとも異なる根 β が存在する．ωβ, ω2β も
f(X)の根であり，これら 6つは相異なる．根と係数の関係から α3β3 = 27ゆえ，必要なら β の
取り方を変えることで αβ = 3として良い．したがって f(X)の根は

α, ωα, ω2α,
3

α
,

3

ωα
,

3

ω2α

と表せる．これより

(∗) ⇐⇒ f(X)のある根 αに対してω ∈ Q(α)かつ f(X)が既約

が成り立つ．引き続き α を f(X) の根とする．必要条件を求めるため k が (∗) をみたすと仮定
する．

f(X) = 0 ⇐⇒ X3 =
−k ±

√
k2 − 108

2
(1)

ゆえ，γ =
√
k2 − 108 ∈ Q(α)．もし γ ∈ Qなら f(X)が Q係数多項式X3 − γ で割り切れ f(X)

の既約性に矛盾する．よって Q(γ)/Q は 2 次のガロア拡大．Q(ω)/Q も 2 次のガロア拡大ゆえ，
もし Q(γ) 6= Q(ω) なら Q(γ) ∩ Q(ω) = Q と推進定理より [Q(ω, γ) : Q] = 4 となる．これは
[Q(α) : Q] = 6に矛盾する．よって Q(ω) = Q(γ)．Q(ω)の基底として {1, ω}が取れるため

γ = p+ qω

なる p, q ∈ Qが存在する．Gal(Q(ω)/Q)の自明でない元によって両辺写して

−γ = p+ qω2.

これらの和，積を考えると

0 = 2p− q, −(k2 − 108) = p2 + q2 − pq

15
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となる．よって 108 = k2+3p2．これより k = 9．逆に k = 9のとき，式 (1)より 1+α3/3 = ω, ω2

ゆえ ω ∈ Q(α)．また素数 2を法とすると

f(X) ≡ X6 +X3 + 1 mod 2

であり，これは (Z/2Z)[X]の 3次以下の既約多項式X,X+1, X2+X+1, X3+X2+1, X3+X+1

のいずれでも割り切れない．よって X6 +X3 + 1は (Z/2Z)[X]の既約多項式なので，f(X)は Q
上既約．したがって k = 9は (∗)をみたしている．以上より答えは k = 9．

16
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口頭試問
口頭試問は大きく

(1). 事務的なこと
(2). 筆記試験について
(3). 専攻分野について

を聞かれた．
(1)では受験番号，名前，併願状況，博士課程進学を希望するか，を聞かれた．（選考に関係しな
い，と最初に断りがあった）
(2)ではまず筆記試験のできを聞かれ，できた問題，できなかった問題，できなかったが試験後
解けた問題を答えた．（私は専門科目についてしか聞かれなかったが基礎科目についてしか聞かれ
なかった人もおり，筆記試験の状況でどちらの科目を口頭試問で聞くか決められているようだっ
た）試験後に解けた 3 の解答を発表してと指示され解答を発表し，その後 3 についてさらに一つ
質問をされた．（最終段落参照）
(3)では，志望分野（私の場合数論）について今までどんな勉強をしてきたかを聞かれた．私は
志望した分野について先立って勉強していることがなかったため，授業で整数論を履修したこと
と，代数系の基礎を赤青雪江やアティマクで固めたことを答えた．その中で特に面白く感じたト
ピックなどについて聞かれ，類数の話をすると，類数が 1でない例を挙げられるか，などいくつか
質問された．（おそらく志望分野の勉強がより進んでいる人には，より本格的な理解度を計る質問
がされるのだろう）他には数理論理学を講究でやっているのになぜ数論志望なのか，などいくつか
質問をされた．そんなこんなで面接は三十分ほどで終わった．（私の友人らの面接時間は大体 15分
から 30分ぐらいだったようだが，中には 5分ほどで終わったり 45分ほどかかった人もいたよう
だった）
以下，(2)で聞かれた追加の質問とその解答．
3 についての追加質問� �

Gal(Q(α)/Q)は何になるか．� �
（解答）考えながら話した内容をそのまま書く．位数 6の群は Z/6Z,S3 のいずれかと同型となる．
これらは共に位数 2の部分群を持ち，それは前者なら正規部分群，後者なら正規でない部分群であ
る．したがって [Q(α) : M ] = 2，つまり Qの 3次拡大である Q(α)/Qの中間体M が，Qのガロ
ア拡大であるかどうかを見れば良い．（ここより先はわかっていない）
（追記）後日解けた．αの Q上共役は

α, ωα, ω2α,
3

α
,

3

ωα
,

3

ω2α

であった．σ ∈ Gal(Q(α)/Q) であって σ(α) = 3/ωα となるようなものが存在する．これの位数
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を考える．ω = 1 + α3/3ゆえ

σ(ω) = 1 +
(3/ωα)3

3
= 1 +

9

α3

であり，

σ(ω)ω =

(
1 +

9

α3

)(
1 +

α3

3

)
= 1 +

α6 + 27

3α3
+ 3 = 1 +

−9α3

3α3
+ 3 = 1

ゆえ σ(ω) = ω2．したがって

σ(α) =
3

ωα
, σ2(α) =

3

ω2(3/ωα)
= ω2α, σ3(α) = (ω2)2

3

ωα
=

3

α

より σ, σ2, σ3 6= 1ゆえ σ の位数は 6．よって Gal(Q(α)/Q) ∼= Z/6Z．（生成元の共役元が全て記
述できているときには，まず共役元の集合にガロア群を作用させて，置換表現を見るべきですね．
口頭試問で私が言ったことはあまり筋が良くなかったです）
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