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1 はじめに
本稿では蛇の補題を一般化する．[1]ではより整理された議論がされているが，素朴な証明を与
えているという点で本稿にはオリジナリティがあると考える．本記事を読むにあたって，以下に注
意されたい．

• 環 Rを固定し，加群は R上とする．
• 可換図式の横の並びを行，縦の並びを列と呼ぶ．（行列を扱う際と同様である）
• nは 2以上の自然数とする．
• 図式中に現れる点線は見やすさのために引かれた補助線であり，特別な意味はない．

2 一般化蛇の補題
2.1 主張と方針
最初に一般化蛇の補題の主張を記す．
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2 一般化蛇の補題

定理 1.一般化蛇の補題� �
下図のような，0を無視すると n× (n+ 1)の格子状になる加群の可換図式を考える．

A1,1 A1,2 A1,3 · · · A1,n+1 0

0 A2,1 A2,2 A2,3 · · · A2,n+1 0

...
...

...
...

. . .
...

...

0 An−1,1 An−1,2 An−1,3 · · · An−1,n+1 0

0 An,1 An,2 An,3 · · · An,n+1

α1 α2 α3 αn+1

β1 β2 β3 βn+1

f

g

各行，各列が完全列であるとき，以下ような核，余核に関連した完全列が存在する．

Kerα1 Kerα2 Kerα3 · · · Kerαn+1

Cokerβ1 Cokerβ2 Cokerβ3 · · · Cokerβn+1

f ′

g′

d

さらに，f が単射なら f ′ も単射，g が全射なら g′ も全射である．� �
一般の nで示すと単に煩雑になるので，今回は n = 3の場合に示す．証明を詳細に追えば n = 3

の場合と全く同様にして一般の nでも示せることがわかる．
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2 一般化蛇の補題

命題 2.一般化蛇の補題（n = 3の場合）� �
下図のような，0を無視すると 3× 4の格子状になる加群の可換図式を考える．

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

α1 β1 γ1 δ1

α2 β2 γ2 δ2

f1 g1 h1

f2 g2 h2

f3 g3 h3

各行，各列が完全列であるとき，以下ような核，余核に関連した完全列が存在する．

Kerα1 Kerβ1 Ker γ1 Ker δ1

Cokerα2 Cokerβ2 Coker γ2 Coker δ2

f1
′ g1

′ h1
′

f3
′ g3

′ h3
′

d

さらに，f1 が単射なら f1
′ も単射，h3 が全射なら h3

′ も全射である．� �
証明を以下の流れで行う．

1. f1
′, g1

′, h1
′, f3

′, g3
′, h3

′ を定義し，Kerβ1,Ker γ1,Cokerβ2,Coker γ2 での完全性を示す．
2. dを定義する．
3. Ker δ1,Cokerα2 での完全性を示す．

証明において図 3 の図式に補題を用いることがある．ただし ιA, ιB , ιC , ιD は包含写像，
πA, πB , πC , πD は射影である．
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2 一般化蛇の補題

Kerα1 Kerβ1 Ker γ1 Ker δ1

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

Cokerα2 Cokerβ2 Coker γ3 Coker δ3

ιA ιB ιC ιD

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πA πB πC πD

f1
′ g1

′ h1
′

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′ g3

′ h3
′

図 3.

2.2 d以外の写像の定義と完全性
写像の定義
h1

′, f3
′ の定義のみのべる．d 以外の他の写像も同様に定義する．h1

′ : Ker γ1 → Ker δ1, f3
′ :

Cokerα2 → Cokerβ2 を

h1
′(c1) = h1(c1), f3

′([a3]) = [f3(a3)]

で定義する．ただし [·]は同値類を表す．well-definedであることを確かめる．まず h1
′ について．

c1 ∈ Ker γ1 なら可換性から δ1(h1(c1)) = h2(γ1(c1)) = 0 ゆえ，h1
′ : Ker γ1 → Ker δ1 として定

まっている．次に f3
′ について．[a3] = [a′3]なら α2(a2) = a3 − a′3 なる a2 ∈ A2 が存在する．

f3(a3)− f3(a
′
3) = f3(a3 − a′3) = f3(α2(a2)) = β2(f2(a2)) ∈ Imβ2

ゆえ [f3(a3)] = [f3(a
′
3)]．定め方より h1

′, f3
′ は準同型である．

f1
′, h3

′ について，定め方より f1 が単射なら f1
′ も単射，h3 が全射なら h3

′ も全射である．よっ
て命題 2の最後の主張が従う．

完全性
まず補題を二つ示す．
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2 一般化蛇の補題

補題 4.� �
各行が完全列な加群の可換図式

Y1 Z1 W1

X2 Y2 Z2

g1 h1

f2 g2

η ζ

において元が

z1 0

0

h1

ζ

と写されているとする．このとき y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2 が存在し

y1 z1 0

x2 y2 0

g1 h1

f2 g2

η ζ

となる．� �
証明 略．
補題 4中の一つ目の図式と仮定を満たす元の組を (Y1, Z1,W1;X2, Y2, Z2 : z1)，得られる元の組を
(y1, x2, y2)と書くことにする．
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2 一般化蛇の補題

補題 5.� �
各行が完全列な加群の可換図式

X1 Y1 Z1

X2 Y2

f1 g1

f2

ξ η

において元が

x1 y1 z1

x2 y2

g1

f2

ξ η

と写されているとする．このとき

y1 − f1(x1) z1

0

g1

η

となる．� �
証明 略．
補題 5 中の一つ目の図式と仮定を満たす元を合わせて (X1, Y1, Z1;X2, Y2 : x1, y1) と書くことに
する．
完全性の証明に移る．Ker γ1,Cokerβ2 での完全性のみ調べる．他も同様に調べられる．ま
ず Ker γ1 について．元の図式の完全性から h1

′ ◦ g1
′ = 0 ゆえ Im g1

′ ⊆ Kerh1．逆の包含
を補題 4,5 を用いて示す．c1 ∈ Kerh1

′ = Kerh1 ∩ Ker γ1 を任意にとる．補題 4 を図式
(B1, C1, D1;A2, B2, C2 : c1) に用いて (b1, a2, b2) を得る．b2 ∈ Imβ1 = Kerβ2 であるので再
び補題 4を図式 (A2, B2, C2; 0, A3, B3 : b2)に用いて (0, a2, a3)を得る．0の像ゆえ a3 = 0．よっ
て a2 ∈ Kerα2 = Imα1．a1 ∈ α1

−1(a2)を一つとる．補題 5を図式 (A1, B1, C1;A2, B2 : a1, b1)

に用いて b1 − f1(a1) ∈ g1
−1(c1) ∩ Kerβ1 = h1

′−1(c1)を得る．よって c1 ∈ Im g1
′ であり，した

がって Im g1
′ ⊇ Kerh1

′．（図 6）
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2 一般化蛇の補題

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

α1 β1 γ1 δ1

α2 β2 γ2 δ2

f1 g1 h1

f2 g2 h2

f3 g3 h3

a1 b1 c1 0

a2 b2 0

0 a3 = 0 0

α1 β1 γ1

α2 β2

f1 g1 h1

f2 g2

f3

図 6.

次に Cokerβ2 について．元の図式の完全性より g3
′ ◦ f3

′ = 0 ゆえ Im f3
′ ⊆ Ker g3

′．逆の包
含を補題 4,5 を用いて示す．（図式を転置した形で用いることに注意）[b3] ∈ Ker g3

′ を任意にと
る．c3 = g3(b3) とおく．補題 4 を図式 (C2, C3,Coker γ2;D1, D2, D3 : c3) に用いて (c2, d1, d2)

を得る．（図 7）h1 は全射ゆえ c1 ∈ h1
−1(d1) が存在する．補題 5 を図式 (C1, C2, C3;D1, D2 :

c1, c2) に用いて c2
′ = c2 − γ1(c1) ∈ γ2

−1(c3) ∩ Kerh2 を得る．c2
′ ∈ Kerh2 = Im g2 ゆえ

b2 ∈ g2
−1(c2

′)が存在する．（図 8）再び補題 5を図式 (B2, B3,Cokerβ2;C2, C3 : b2, b3)に用いて
b3

′ = b3 − β2(b2) ∈ πB
−1([b3])∩Ker g3 を得る．（図 9）b3′ ∈ Ker g3 = Im f3 ゆえ a3 ∈ f3

−1(b3
′)

が存在する．f3
′([a3]) = [f3(a3)] = [b3]ゆえ [b3] ∈ Im f3

′．したがって Im f3
′ ⊇ Ker g3

′．

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

Cokerα2 Cokerβ2 Coker γ2 Coker δ2

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πB

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′ g3

′ h3
′
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2 一般化蛇の補題

c1 d1 0

c2 d2

b3 c3 0

[b3] 0

γ1 δ1

γ2 δ2

πB πC

h1

h2

g3 h3

g3
′

図 7.

b2 c2
′ 0

b3 c3

[b3]

γ2

πB

g2

g3

図 8.

a3 b3
′ 0

[a3] [b3]

πA πB

f3 g3

f3
′

図 9.

8



2 一般化蛇の補題

補題 4,5を繰り返し用いることで，この証明と同様に一般の nでも示せることを指摘しておく．

2.3 dの定義
dの定義を与えるために，まず次のように写像を定める．
命題 10.� �
各行，各列が完全列である加群の可換図式

Y1 Z1

X2 Y2 Z2

Y3 Z3

η1 ζ1

η2 ζ2

g1

f2 g2

g3

に対して

Z̃2 = (Im g2 ∩ Im ζ1)/ Im(ζ1 ◦ g1), Ỹ3 = (Ker g3 ∩ Im η2)/ Im(η2 ◦ f2)

とする．ϕ : Z̃2 → Ỹ3を，[z2] ∈ Z̃2に対して y2 ∈ g2
−1(z2)を用いて，ϕ([z2]) = [η2(y2)] ∈ Ỹ3

とすることで定める．

y2 z2

η2(y2)

η2
[z2]

[η2(y2)]
ϕ

g2

ϕは well-definedで加群の準同型である．� �
証明 略．
命題 10中の図式を (Y1, Z1;X2, Y2, Z2;Y3, Z3)と書くことにする．
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2 一般化蛇の補題

d : Ker δ1 → Cokerα2 を定義する．まず命題 10を図式

(Ker γ1,Ker δ1;B1, C1, D1;C2, D2),

(B1, C1;A2, B2, C2;B3, C3),

(A2, B2; 0, A3, B3; Cokerα2,Cokerβ2)

に用いて写像 ϕD : D̃1 → C̃2, ϕC : C̃2 → B̃3, ϕB : B̃3 → ˜Cokerα2 を得る．ここで Im(0 →
A3 → Cokerα2) = 0 ゆえ ˜Cokerα2 ⊆ Cokerα2 であることに注意する．p : Ker δ1 → D̃1 を
包含写像と射影を合成したもの，i : ˜Cokerα2 → Cokerα2 を包含写像とする．これらを用いて
d = i ◦ ϕB ◦ ϕC ◦ ϕD ◦ p，すなわち

Ker δ1
d−→ Cokerα2 = Ker δ1

p−→ D̃1
ϕD−→ C̃2

ϕC−→ B̃3
ϕB−→ ˜Cokerα2

i−→ Cokerα2

と定める．C2 での行の完全性より

CodomϕD = (Im g2 ∩ Im γ1)/ Im(γ1 ◦ g1) = (Kerh2 ∩ Im γ1)/ Im(γ1 ◦ g1) = DomϕC

であり，B̃3 についても同様で，ゆえに合成は well-definedである．一般の nでも同様に定義でき
ることを指摘しておく．具体的に d1 ∈ Ker δ1 の像 d(d1) = [a3]は，命題 10の ϕの定義を思い出
し代表元に注目することで，図 12のように

d1 −→ c1 −→ c2 −→ b2 −→ b3 −→ a3 −→ [a3]

と，像を取る操作と逆像の中から元を取る操作を繰り返すことで得られる．

Ker γ1 Ker δ1

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

Cokerα2 Cokerβ2

ιC ιD

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πA πB

h1
′

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′

図 11.

10



2 一般化蛇の補題

d1

c1 d1

b2 c2

a3 b3

[a3]

iD

γ1

β2

πA

h1

g2

f3

図 12.

2.4 Ker δ1,Cokerα2 での完全性
順に Ker δ1,Cokerα2 での完全性を示す．

Ker δ1 での完全性
図 12のようにして d1 ∈ Ker δ1 の dによる像 [a3] ∈ Cokerα2 が決まっているとする．
d1 ∈ Imh1

′とすると，ある c′1 ∈ Ker γ1が存在して h1
′(c′1) = d1，すなわち h1(c

′
1) = d1となる．

well-definednessより c1 = c′1 として良い，つまり c1 ∈ Ker γ1 と取れる．よって c2 = 0となる．
同様にして b2 = 0, b3 = 0, a3 = 0として取れ，したがって [a3] = 0となる．よって d1 ∈ Ker d．
ゆえに Imh1

′ ⊆ Ker d．
逆の包含を示す．d1 ∈ Ker d，すなわち [a3] = 0 とする．a3 ∈ KerπA = Imα2 ゆえ a2 ∈

α2
−1(a3)が存在する．補題 5を図式 (A2, B2, C2;A3, B3 : a2, b2)に用いると，β2(b2 − f2(a2)) =

0, g2(b2−f2(a2)) = c2と分かる．よってwell-definednessより，b2 → b2−f2(a2), b3 → 0, a3 → 0

と置き換えることを考え b2 ∈ Kerβ2, b3 = 0, a3 = 0 と取ることができる．b3 = 0 とした
のでもう一度同様の議論ができ，c1 ∈ Ker γ1, c2 = 0, b2 = 0 と取ることができる．これより
h1(c1) = d1, c1 ∈ Ker γ1 となる c1 ∈ C1 が取れたので，d1 ∈ Imh1

′．よって Imh1
′ ⊇ Ker d．
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Cokerα2 での完全性
図 12 のようにして d1 ∈ Ker δ1 の d による像 [a3] ∈ Cokerα2 が決まっているとする．

f3
′([a3]) = [f3(a3)] = [β2(b2)] = 0ゆえ f3

′(d(d1)) = 0．よって Im d ⊆ Ker f3
′．

逆の包含を示す．[a3] ∈ Ker f ′
3 とする．（ここでは図 12 のようになっているとは限らな

いことに注意せよ．むしろ図 12 を満たすように元が取れることを示す）図 11 の第 1 列に
Cokerα2 → 0 を加えるとこれは再び完全列．補題 4 を図式 (A3,Cokerα2, 0;B2, B3 Cokerβ2 :

[a3]) に用いて (a3, b2, b3) を得る．b3 ∈ KerπB ∩ Im f3 = KerπB ∩ Ker g3 ゆえ，再び補題
4 を図式 (B2, B3,Cokerβ2;C1, C2, C3 : b3) に用いて (b2, c1, c2) を得る．同様に補題 4 を図式
(C1, C2, C3; Ker δ1, D1, D2 : c2) に用いて (c1, d1, d1) を得る．[a3], a3, b3, b2, c2, c1, d1 は図 12 を
満たす．よって d(d1) = [a3]ゆえ [a3] ∈ Im d．したがって Im d ⊇ Ker f3

′．

同様の議論で一般の nでも示すことができることを指摘しておく．
以上で一般化蛇の補題の n = 3 の場合の証明が完了した．さらに与えた証明を詳細に追うこと
で，何度か指摘したように一般の nでも同様の議論ができること，そしてそれによって一般化蛇の
補題の証明が与えられることが分かる．また一般化蛇の補題を用いることで，九項補題の一般化を
示すことができる．
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