
一般化蛇の補題と n2項補題
真中遥道

@GirlwithAHigoi

2022年 12月 12日

0 Kerα1 Kerβ1 Ker γ1 Ker δ1

0 A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3 0

Cokerα2 Cokerβ2 Coker γ3 Coker δ3 0

ιA ιB ιC ιD

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πA πB πC πD

f1
′ g1

′ h1
′

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′ g3

′ h3
′

1



目次 真中遥道 @GirlwithAHigoi

目次

0 注意 3

1 はじめに 3

2 一般化蛇の補題 4

2.1 主張と方針 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 d以外の写像の定義と完全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 dの定義 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Ker δ1,Cokerα2 での完全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 n2 項補題 15

4 おわりに 17

2



1 はじめに 真中遥道 @GirlwithAHigoi

0 注意
本記事を読むにあたって，以下に注意されたい．

• 環 Rを固定し，加群は R上とする．
• 可換図式の横の並びを行，縦の並びを列と呼ぶ．（行列を扱う際と同様である）
• nは 2以上の自然数とする．
• 図式中に現れる点線は見やすさのために引かれた補助線であり，特別な意味はない．

1 はじめに
幾何学演義 IIの授業にて九項補題を証明する問題が出された．九項補題とは次のようなもので
ある．
定理 1.九項補題� �
下図のような加群の可換図式を考える．各列は完全列であるとする．

0 0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

0 A3 B3 C3 0

0 0 0

このとき，次が成り立つ．

1. 下 2行が完全列なら，上の 1行も完全列．
2. 上 2行が完全列なら，下の 1行も完全列．� �

実はこの九項補題は蛇の補題を使うと簡単に示すことができる．蛇の補題とは次のようなもので
ある．

3



2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

定理 2.蛇の補題� �
下図のような加群の可換図式を考える．

A1 B1 C1 0

0 A2 B2 C2

f1 g1

f2 g2

α β γ

各行が完全列であるとき，以下のような核，余核に関連した完全列が存在する．

Kerα
f1

′

−→ Kerβ
g1

′

−→ Ker γ
d−→ Cokerα

f2
′

−→ Cokerβ
g2

′

−→ Coker γ

さらに，f1 が単射なら f1
′ も単射，g2 が全射なら g2

′ も全射である．*1� �
この蛇の補題を九項補題の仮定にある完全な二行に適用すると九項補題を示すことができる．私が
授業でこの問題を示した際に，担当の K先生が「誰か暇だったら一般化して n2 補題を示してくだ
さい」とおっしゃっていたので挑戦してみたところ，一般化版を証明することができた．本記事で
はその証明を記す．

2 一般化蛇の補題
2.1 主張と方針
九項補題の証明を見れば蛇の補題が強い働きをしていることに気づくだろう．そこでまず蛇の補
題を一般化し，それを九項補題の際に行ったように適用することで n2 項補題を示す．最初に一般
化蛇の補題の主張を記す．

*1 これは最初の可換図式の行に 0 → A1, C2 → 0 という部分が加えられれば，得られる完全列にそれぞれ 0 →
Kerα,Coker γ → 0という部分を加えても，また完全列になっているという意味である．
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

定理 3.一般化蛇の補題� �
下図のような，0を無視すると n× (n+ 1)の格子状になる加群の可換図式を考える．

A1,1 A1,2 A1,3 · · · A1,n+1 0

0 A2,1 A2,2 A2,3 · · · A2,n+1 0

...
...

...
...

. . .
...

...

0 An−1,1 An−1,2 An−1,3 · · · An−1,n+1 0

0 An,1 An,2 An,3 · · · An,n+1

α1 α2 α3 αn+1

β1 β2 β3 βn+1

f

g

各行，各列が完全列であるとき，以下ような核，余核に関連した完全列が存在する．

Kerα1 Kerα2 Kerα3 · · · Kerαn+1

Cokerβ1 Cokerβ2 Cokerβ3 · · · Cokerβn+1

f ′

g′

d

さらに，f が単射なら f ′ も単射，g が全射なら g′ も全射である．*2� �
蛇の補題は 2行 3列の可換図式に対しての主張であったが，それを n行 n + 1列の可換図式に対
しての主張に一般化する，ということだ．一般の nで示そうとすると単に煩雑になるだけなので，
今回は n = 3の場合に示す．証明を詳細に追えば n = 3の場合と全く同様にして一般の nでも示
せることがわかるだろう．n = 3の場合の主張を記しておく．

*2 定理 2と同様，図式の言葉でも解釈できる．
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

命題 4.一般化蛇の補題（n = 3の場合）� �
下図のような，0を無視すると 3× 4の格子状になる加群の可換図式を考える．

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

α1 β1 γ1 δ1

α2 β2 γ2 δ2

f1 g1 h1

f2 g2 h2

f3 g3 h3

各行，各列が完全列であるとき，以下ような核，余核に関連した完全列が存在する．

Kerα1 Kerβ1 Ker γ1 Ker δ1

Cokerα2 Cokerβ2 Coker γ2 Coker δ2

f1
′ g1

′ h1
′

f3
′ g3

′ h3
′

d

さらに，f1 が単射なら f1
′ も単射，h3 が全射なら h3

′ も全射である．� �
証明を以下の流れで行う．

1. f1
′, g1

′, h1
′, f3

′, g3
′, h3

′ を定義し，Kerβ1,Ker γ1,Cokerβ2,Coker γ2 での完全性を示す．
2. dを定義する．
3. Ker δ1,Cokerα2 での完全性を示す．

証明において図 5の図式に補題を用いることがある．命題 4中の可換図式が各列完全列なら，図 5

の図式も可換で各列が完全列であることを今のうちに注意しておく．ただし ιA, ιB , ιC , ιD は包含
写像，πA, πB , πC , πD は射影である．これは一般の nでも成り立つ．（元の図式の各行が完全列な
ら図 5の図式の各行も完全列になるが，これは 2.2で行う証明からしたがう）

6



2 一般化蛇の補題 真中遥道 @GirlwithAHigoi
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図 5.

2.2 d以外の写像の定義と完全性
写像の定義
h1

′, f3
′ の定義のみのべる．d 以外の他の写像も同様に定義する．h1

′ : Ker γ1 → Ker δ1, f3
′ :

Cokerα2 → Cokerβ2 を

h1
′(c1) = h1(c1), f3

′([a3]) = [f3(a3)]

で定義する．ただし [·]は同値類を表す．well-definedであることを確かめる．まず h1
′ について．

c1 ∈ Ker γ1 なら可換性から δ1(h1(c1)) = h2(γ1(c1)) = 0 ゆえ h1(c1) ∈ Ker δ1 となっており，
h1

′ : Ker γ1 → Ker δ1 として定まっている．次に f3
′ について．[a3] = [a′3]なら α2(a2) = a3 − a′3

なる a2 ∈ A2 が存在する．

f3(a3)− f3(a
′
3) = f3(a3 − a′3) = f3(α2(a2)) = β2(f2(a2)) ∈ Imβ2

ゆえ [f3(a3)] = [f3(a
′
3)]．定め方より h1

′, f3
′ は準同型である．

f1
′, h3

′ について，定め方より f1 が単射なら f1
′ も単射，h3 が全射なら h3

′ も全射である．よっ
て命題 4の最後の主張が従う．

完全性
まず補題を二つ示す．
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

補題 6.� �
各行が完全列な加群の可換図式

Y1 Z1 W1

X2 Y2 Z2

g1 h1

f2 g2

η ζ

において元が

z1 0

0

h1

ζ

と写されているとする．このとき y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2 が存在し

y1 z1 0

x2 y2 0

g1 h1

f2 g2

η ζ

となる．� �
証明 Z1 での完全性より，ある y1 ∈ Y1 が存在して g1(y1) = z1 となる．y2 = η(y1) とおく．
g2(y2) = ζ(g1(y1)) = 0より y2 ∈ Ker g2 = Im f2．よってある x2 ∈ X2 が存在し f2(x2) = y2 と
なる．
補題 6中の一つ目の図式と仮定を満たす元の組を (Y1, Z1,W1;X2, Y2, Z2 : z1)，得られる元の組を
(y1, x2, y2)と書くことにする．
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

補題 7.� �
各行が完全列な加群の可換図式

X1 Y1 Z1

X2 Y2

f1 g1

f2

ξ η

において元が

x1 y1 z1

x2 y2

g1

f2

ξ η

と写されているとする．このとき

y1 − f1(x1) z1

0

g1

η

となる．� �
証明 g1(y1 − f1(x1)) = g1(y1) − g1(f1(x1)) = g1(y1) = z1 と η(y1 − f1(x1)) = η(y1) −
η(f1(x1)) = η(y1)− f2(ξ(x1)) = 0よりしたがう．
補題 7 中の一つ目の図式と仮定を満たす元を合わせて (X1, Y1, Z1;X2, Y2 : x1, y1) と書くことに
する．
完全性の証明に移る．Ker γ1,Cokerβ2 での完全性のみ調べる．他も同様に調べられる．ま
ず Ker γ1 について．元の図式の完全性から h1

′ ◦ g1
′ = 0 ゆえ Im g1

′ ⊆ Kerh1．逆の包含
を補題 6,7 を用いて示す．c1 ∈ Kerh1

′ = Kerh1 ∩ Ker γ1 を任意にとる．補題 6 を図式
(B1, C1, D1;A2, B2, C2 : c1) に用いて (b1, a2, b2) を得る．b2 ∈ Imβ1 = Kerβ2 であるので再
び補題 6を図式 (A2, B2, C2; 0, A3, B3 : b2)に用いて (0, a2, a3)を得る．0の像ゆえ a3 = 0．よっ
て a2 ∈ Kerα2 = Imα1．a1 ∈ α1

−1(a2)を一つとる．補題 7を図式 (A1, B1, C1;A2, B2 : a1, b1)

に用いて b1 − f1(a1) ∈ g1
−1(c1) ∩ Kerβ1 = h1

′−1(c1)を得る．よって c1 ∈ Im g1
′ であり，した

がって Im g1
′ ⊇ Kerh1

′．（図 8）
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

α1 β1 γ1 δ1

α2 β2 γ2 δ2

f1 g1 h1

f2 g2 h2

f3 g3 h3

a1 b1 c1 0

a2 b2 0

0 a3 = 0 0

α1 β1 γ1

α2 β2

f1 g1 h1

f2 g2

f3

図 8.

次に Cokerβ2 について．元の図式の完全性より g3
′ ◦ f3

′ = 0 ゆえ Im f3
′ ⊆ Ker g3

′．逆の包
含を補題 6,7 を用いて示す．（図式を転置した形で用いることに注意）[b3] ∈ Ker g3

′ を任意にと
る．c3 = g3(b3) とおく．補題 6 を図式 (C2, C3,Coker γ2;D1, D2, D3 : c3) に用いて (c2, d1, d2)

を得る．（図 9）h1 は全射ゆえ c1 ∈ h1
−1(d1) が存在する．補題 7 を図式 (C1, C2, C3;D1, D2 :

c1, c2) に用いて c2
′ = c2 − γ1(c1) ∈ γ2

−1(c3) ∩ Kerh2 を得る．c2
′ ∈ Kerh2 = Im g2 ゆえ

b2 ∈ g2
−1(c2

′)が存在する．（図 10）再び補題 7を図式 (B2, B3,Cokerβ2;C2, C3 : b2, b3)に用いて
b3

′ = b3−β2(b2) ∈ πB
−1([b3])∩Ker g3を得る．（図 11）b3′ ∈ Ker g3 = Im f3ゆえ a3 ∈ f3

−1(b3
′)

が存在する．f3
′([a3]) = [f3(a3)] = [b3]ゆえ [b3] ∈ Im f3

′．したがって Im f3
′ ⊇ Ker g3

′．

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

Cokerα2 Cokerβ2 Coker γ2 Coker δ2

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πB

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′ g3

′ h3
′
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

c1 d1 0

c2 d2

b3 c3 0

[b3] 0

γ1 δ1

γ2 δ2

πB πC

h1

h2

g3 h3

g3
′

図 9.

b2 c2
′ 0

b3 c3

[b3]

γ2

πB

g2

g3

図 10.

a3 b3
′ 0

[a3] [b3]

πA πB

f3 g3

f3
′

図 11.
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

補題 6,7を繰り返し用いることで，この証明と同様に一般の nでも示せることを指摘しておく．

2.3 dの定義
dの定義を与えるために，まず次のように写像を定める．
命題 12.� �
各行，各列が完全列である加群の可換図式

Y1 Z1

X2 Y2 Z2

Y3 Z3

η1 ζ1

η2 ζ2

g1

f2 g2

g3

に対して

Z̃2 = (Im g2 ∩ Im ζ1)/ Im(ζ1 ◦ g1), Ỹ3 = (Ker g3 ∩ Im η2)/ Im(η2 ◦ f2)

とする．ϕ : Z̃2 → Ỹ3を，[z2] ∈ Z̃2に対して y2 ∈ g2
−1(z2)を用いて，ϕ([z2]) = [η2(y2)] ∈ Ỹ3

とすることで定める．

y2 z2

η2(y2)

η2
[z2]

[η2(y2)]
ϕ

g2

ϕは well-definedで加群の準同型である．� �
証明 well-definedであることを見る．まず z2 ∈ Im ζ1 = Ker ζ2ゆえ g3(η2(y2)) = ζ2(z2) = 0．
よって η2(y2) ∈ Ker g3 ゆえ [η2(y2)] ∈ Ỹ3 である．次に y2 ∈ Y2 の取り方の任意性について．
y2, y

′
2 ∈ g2

−1(z2)とする．y2 − y′2 ∈ Ker g2 = Im f2 より

η2(y2)− η2(y
′
2) = η(y2 − y′2) ∈ Im(η2 ◦ f2).
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

よって [η2(y2)] = [η2(y
′
2)]．最後に z2 ∈ Z2 の取り方の任意性について．[z2] = [z′2] ∈ Z̃2 である

とする．ある y1 ∈ Y1 が存在して ζ1 ◦ g1(y1) = z2 − z′2 となる．y2 ∈ g2
−1(z2), y

′
2 ∈ g2

−1(z′2)を
とる．y2 − y′2 − η1(y1) ∈ Ker g2 = Im f2 ゆえ，

η2(y2)− η2(y
′
2) =η2(y2)− η2(y

′
2)− η2(η1(y1))

=η2(y2 − y′2 − η1(y1)) ∈ Im(η2 ◦ f2).

よって [η2(y2)] = [η2(y
′
2)]．したがって ϕは well-definedである．準同型であることは定め方より

したがう．
命題 12中の図式を (Y1, Z1;X2, Y2, Z2;Y3, Z3)と書くことにする．
d : Ker δ1 → Cokerα2 を定義する．まず命題 12を図式

(Ker γ1,Ker δ1;B1, C1, D1;C2, D2),

(B1, C1;A2, B2, C2;B3, C3),

(A2, B2; 0, A3, B3; Cokerα2,Cokerβ2)

に用いて写像 ϕD : D̃1 → C̃2, ϕC : C̃2 → B̃3, ϕB : B̃3 → ˜Cokerα2 を得る．ここで Im(0 →
A3 → Cokerα2) = 0 ゆえ ˜Cokerα2 ⊆ Cokerα2 であることに注意する．p : Ker δ1 → D̃1 を
包含写像と射影を合成したもの，i : ˜Cokerα2 → Cokerα2 を包含写像とする．これらを用いて
d = i ◦ ϕB ◦ ϕC ◦ ϕD ◦ p，すなわち

Ker δ1
d−→ Cokerα2 = Ker δ1

p−→ D̃1
ϕD−→ C̃2

ϕC−→ B̃3
ϕB−→ ˜Cokerα2

i−→ Cokerα2

と定める．ϕD の余域としての C̃2 と，ϕC の定義域としての C̃2 は同じとは限らないが，C2 での
行の完全性より

CodomϕD = (Im g2 ∩ Im γ1)/ Im(γ1 ◦ g1) = (Kerh2 ∩ Im γ1)/ Im(γ1 ◦ g1) = DomϕC

となり，一致する．B̃3 についても同様で，ゆえに合成は well-definedである．一般の nでも同様
に定義できることを指摘しておく．具体的には d1 ∈ Ker δ1 の像 d(d1) = [a3]は，

d1 7−→ p(d1) = [d1] 7−→ ϕD([d1]) = [c2] 7−→ ϕC([c2]) = [b3] 7−→ ϕB([b3]) = [a3]

と辿ることで得られる．しかしこれでは，どの様に像が決定されているのかよく分からない．そこ
で命題 12の ϕの定義を思い出し同値類でなく代表元に注目すれば，図 14のように

d1 −→ c1 −→ c2 −→ b2 −→ b3 −→ a3 −→ [a3]

と，像を取る操作と逆像の中から元を取る操作を繰り返すことで得られる．このように d1 の dに
よる像 [a3]を得る操作は，もちろん途中の元の取り方によらない．
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2 一般化蛇の補題 真中遥道 @GirlwithAHigoi

Ker γ1 Ker δ1

A1 B1 C1 D1 0

0 A2 B2 C2 D2 0

0 A3 B3 C3 D3

Cokerα2 Cokerβ2

ιC ιD

α1 β1 γ1 δ1

α2 β2 γ2 δ2

πA πB

h1
′

f1 g1 h1

f2 g2 h2

f3 g3 h3

f3
′

図 13.

d1

c1 d1

b2 c2

a3 b3

[a3]

iD

γ1

β2

πA

h1

g2

f3

図 14.
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3 n2 項補題 真中遥道 @GirlwithAHigoi

2.4 Ker δ1,Cokerα2 での完全性
順に Ker δ1,Cokerα2 での完全性を示す．

Ker δ1 での完全性
図 14のようにして d1 ∈ Ker δ1 の dによる像 [a3] ∈ Cokerα2 が決まっているとする．
d1 ∈ Imh1

′とすると，ある c′1 ∈ Ker γ1が存在して h1
′(c′1) = d1，すなわち h1(c

′
1) = d1となる．

well-definednessより c1 = c′1 として良い，つまり c1 ∈ Ker γ1 と取れる．よって c2 = 0となる．
同様にして b2 = 0, b3 = 0, a3 = 0として取れ，したがって [a3] = 0となる．よって d1 ∈ Ker d．
ゆえに Imh1

′ ⊆ Ker d．
逆の包含を示す．d1 ∈ Ker d，すなわち [a3] = 0 とする．a3 ∈ KerπA = Imα2 ゆえ a2 ∈

α2
−1(a3)が存在する．補題 7を図式 (A2, B2, C2;A3, B3 : a2, b2)に用いると，β2(b2 − f2(a2)) =

0, g2(b2−f2(a2)) = c2と分かる．よってwell-definednessより，b2 → b2−f2(a2), b3 → 0, a3 → 0

と置き換えることを考え b2 ∈ Kerβ2, b3 = 0, a3 = 0 と取ることができる．b3 = 0 とした
のでもう一度同様の議論ができ，c1 ∈ Ker γ1, c2 = 0, b2 = 0 と取ることができる．これより
h1(c1) = d1, c1 ∈ Ker γ1 となる c1 ∈ C1 が取れたので，d1 ∈ Imh1

′．よって Imh1
′ ⊇ Ker d．

Cokerα2 での完全性
図 14 のようにして d1 ∈ Ker δ1 の d による像 [a3] ∈ Cokerα2 が決まっているとする．

f3
′([a3]) = [f3(a3)] = [β2(b2)] = 0ゆえ f3

′(d(d1)) = 0．よって Im d ⊆ Ker f3
′．

逆の包含を示す．[a3] ∈ Ker f ′
3 とする．（ここでは図 14 のようになっているとは限らな

いことに注意せよ．むしろ図 14 を満たすように元が取れることを示す）図 13 の第 1 列に
Cokerα2 → 0 を加えるとこれは再び完全列．補題 6 を図式 (A3,Cokerα2, 0;B2, B3 Cokerβ2 :

[a3]) に用いて (a3, b2, b3) を得る．b3 ∈ KerπB ∩ Im f3 = KerπB ∩ Ker g3 ゆえ，再び補題
6 を図式 (B2, B3,Cokerβ2;C1, C2, C3 : b3) に用いて (b2, c1, c2) を得る．同様に補題 6 を図式
(C1, C2, C3; Ker δ1, D1, D2 : c2) に用いて (c1, d1, d1) を得る．[a3], a3, b3, b2, c2, c1, d1 は図 14 を
満たす．よって d(d1) = [a3]ゆえ [a3] ∈ Im d．したがって Im d ⊇ Ker f3

′．

同様の議論で一般の nでも示すことができることを指摘しておく．
以上で一般化蛇の補題の n = 3 の場合の証明が完了した．さらに与えた証明を詳細に追うこと
で，何度か指摘したように一般の nでも同様の議論ができること，そしてそれによって一般化蛇の
補題の証明が与えられることが分かるだろう．

3 n2 項補題
n2 項補題を示すため，まず簡単な補題を示す．
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3 n2 項補題 真中遥道 @GirlwithAHigoi

補題 15.� �
次の加群の可換図式において，α, β, γ が同型で行の一方が完全列なら他方も完全列である．

A1 B1 C1

A2 B2 C2

f1 g1

f2 g2

α β γ

� �
証明 第 1行が完全列であるときに示せば十分である．Im f2 = Im(β ◦ f1 ◦ α−1) = β(Im f1) =

β(Ker g1) = β(Ker γ ◦ g1) = β(Ker g2 ◦ β) = Ker g2．よって第 2行は完全列である．
補題 15と一般化蛇の補題を用いて n2 項補題を示す．
定理 16.n2 項補題� �
下図のような，0を無視すると n× nの格子状になる加群の可換図式を考える．各列は完全列
であるとする．

0 0 · · · 0 0

0 A1,1 A1,2 · · · A1,3 A1,n 0

0 A2,1 A2,2 · · · A2,3 A2,n 0

...
...

...
. . .

...
...

...

0 An−1,1 An−1,2 · · · An−1,3 An−1,n 0

0 An,1 An,2 · · · An,3 An,n 0

0 0 · · · 0 0

α1 α2 α3 αn

β1 β2 β3 βn

γ1 γ2 γ3 γn

δ1 δ2 δ3 δn

このとき，次が成り立つ．

1. 第 2行から第 n行がすべて完全列なら，第 1行も完全列．
2. 第 1行から第 n− 1行がすべて完全列なら，第 n行も完全列．� �
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4 おわりに 真中遥道 @GirlwithAHigoi

証明 n = 2なら，各列が完全列であることから α1, α2 が同型になり，補題 15より主張がしたが
う．以下 n ≥ 3とする．
1について．δ1 が全射ゆえ Coker δ1 = 0であるので，第 2行から第 n行に一般化蛇の補題を用
いると図 17の第 2行が完全列として得られる．

0 A1,1 A1,2 · · · A1,n 0

0 Kerβ1 Kerβ2 · · · Kerβn 0

図 17.

i = 1, . . . , nに対して，αi の単射性と A2,i での列の完全性より，αi は同型 A1,i
∼= Imαi = Kerβi

を与える．図 17の第 1行を元の図式の第 1行，垂直方向の写像を α1, . . . , αn（が誘導する同型）
と自明な同型 0 → 0とすると，元の図式の可換性より図 17は可換図式である．したがって補題 15

より元の図式の第 1行は完全列である．
2について．A1,n での列の完全性から Kerαn = 0であるので，第 1行から第 n− 1行に一般化
蛇の補題を用いると図 18の第 1行が完全列として得られる．

0 Coker γ1 Coker γ2 · · · Coker γn 0

0 A1,1 A1,2 · · · A1,n 0

図 18.

i = 1, . . . , nに対して，δiが全射でありAn−1,iで列が完全なので，準同型定理から δiはCoker γi ∼=
An,i を誘導する．図 18の第 2行を元の図式の第 n行，垂直方向の写像を δ1, . . . , δn が誘導する同
型と自明な同型 0 → 0すると，元の図式の可換性より図 18は可換図式である．したがって補題 15

より元の図式の第 n行は完全列である．
以上より n2 項補題が示された．

4 おわりに
dの定義が一般化蛇の補題の証明の肝であったように思う．これは命題 12によりうまく解決す
ることができた．証明を終えて，得られた dよりも，むしろ命題 12中の Z̃2, Ỹ3 や ϕなどが本質的
に重要な対象であるように思う．命題 12で行ったように完全列，あるいはより広く可換図式から
新たな対象や射を創り出す関手について考えても面白いかもしれない．
最後に，問題を考えるきっかけをくださり，また証明をまとめるよう助言してくださった K先
生に，感謝申し上げます．
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